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Abstract. We calculate the zero-temperature self-energy to fourth-order perturbation theory in the Hub-
bard interaction U for the half-filled Hubbard model in infinite dimensions. For the Bethe lattice with bare
bandwidth W , we compare our perturbative results for the self-energy, the single-particle density of states,
and the momentum distribution to those from approximate analytical and numerical studies of the model.
Results for the density of states from perturbation theory at U/W = 0.4 agree very well with those from
the Dynamical Mean-Field Theory treated with the Fixed-Energy Exact Diagonalization and with the
Dynamical Density-Matrix Renormalization Group. In contrast, our results reveal the limited resolution of
the Numerical Renormalization Group approach in treating the Hubbard bands. The momentum distribu-
tions from all approximate studies of the model are very similar in the regime where perturbation theory
is applicable, U/W ≤ 0.6. Iterated Perturbation Theory overestimates the quasiparticle weight above such
moderate interaction strengths.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

The Hubbard model serves as a paradigm for strongly cor-
related electron systems because it combines the two es-
sential aspects of electrons in solids in a simplistic way. It
describes spin-1/2 electrons moving on a lattice (band-
width W ) which interact only locally with strength U
(Hubbard interaction). Despite its structural simplicity it
is thought to encompass a rich phase diagram.

At half band-filling, when there is on average one elec-
tron per lattice site, the Hubbard model contains a zero-
temperature phase transition from a metal to an insula-
tor, irrespective of any symmetry breaking [1–4]. In the
limit of large lattice dimensions [5], the precise nature of
this Mott-Hubbard transition is not entirely clear. An ex-
act solution of the problem is not possible, and various
approximate treatments have led to two conflicting sce-
narios; for a review, see references [2,3]. For more recent
treatments, see references [6–14].

Discontinuous transition.
The gap jumps to a finite value when the density of states
at the Fermi energy becomes zero at some critical interac-
tion strength Uc,2; the gap is preformed above Uc,1 < Uc,2,
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and the co-existing insulating state is higher in energy
than the metal.

Continuous transition.
The gap opens continuously when the density of states at
the Fermi energy becomes zero, Uc,1 = Uc,2 ≡ Uc.

This situation calls for the development and applica-
tion of systematic and controlled techniques such as high-
order perturbation theory in strong and weak coupling.
Recently, some of us [14] investigated the Mott-Hubbard
insulator on a Bethe lattice in the limit of large coordina-
tion number analytically and numerically. In the present
work, after the introduction of some definitions in Sec-
tion 2, we calculate the one-particle Green function of
the metallic state at half band-filling up to and includ-
ing O[(U/W )4] in Section 3; corrections are of the or-
der (U/W )6 due to particle-hole symmetry. Perturbation
theory to fourth order is found to converge very well at
U = 0.4W , but it begins to fail at U ≈ 0.64W . In Sec-
tion 4, we compare our perturbative results for the density
of states with those of the Dynamical Mean-Field The-
ory (DMFT), analyzed within two recently developed nu-
merical schemes, the Fixed-Energy Exact Diagonalization
(FE-ED) [14] and the Dynamical Density-Matrix Renor-
malization Group (DDMRG) [15,16]. The DMFT, which
becomes exact in the limit of infinite dimensions, requires
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the self-consistent solution of a single-impurity Anderson
model on ns → ∞ bath sites. We employ the FE-ED for
ns ≤ 15 and the DDMRG on up to ns = 64 sites. We
find very good agreement with our perturbative results
for U = 0.4W , and can attribute deviations at U = 0.6W
to the limited accuracy of fourth-order perturbation the-
ory. Therefore, we conclude that the DDMRG provides a
reliable description of the correlated metal at all frequen-
cies. The comparison is less favorable with results from the
Numerical Renormalization Group (NRG) [10] and Iter-
ated Perturbation Theory (IPT) which show noticeable
deviations for intermediate energies, e.g., in the formation
of the Hubbard bands.

In Section 5, we compare our results for the momentum
distribution n(ε) and the quasi-particle weight Z(U) with
those of the Random Dispersion Approximation (RDA),
the NRG and IPT. Within the region of validity of our
perturbation expansion, U ≤ 0.6, the results are almost
identical except for the IPT which already overestimates
the quasi-particle weight at weak to moderate interac-
tion strengths. Conclusions, Section 6, and two appendices
close our presentation.

2 Definitions and basic properties

In this section, we discuss the basic properties of lattice
electrons in the limit of infinite dimensions. We define the
Hubbard Hamiltonian, the one-particle Green function,
and some related one-particle quantities.

2.1 Hamilton operator

We investigate spin-1/2 electrons on a lattice. Their mo-
tion is described by

T̂ =
∑
i,j;σ

ti,j ĉ
+
i,σ ĉj,σ, (1)

where ĉ+i,σ, ĉi,σ are creation and annihilation operators
for electrons with spin σ =↑, ↓ on site i. Here ti,j are
the electron transfer amplitudes between sites i and j,
and ti,i = 0. Since we are ultimately interested in the
Mott-Hubbard transition we consider a half-filled band
where the number of electrons N equals the number of
lattice sites L exclusively.

For lattices with translational symmetry, we have
ti,j = t(i − j), and the operator for the kinetic energy
is diagonal in momentum space,

T̂ =
∑
k;σ

ε(k)ĉ+k,σ ĉk,σ,

ε(k) =
1
L

∑
i,j

t(i − j)e−i(i−j)k. (2)

The density of states for non-interacting electrons is then
given by

ρ(ε) =
1
L

∑
k

δ(ε− ε(k)). (3)

The mth moment of the density of states is defined by

εm =
∫ ∞

−∞
dε εmρ(ε), (4)

and ε = t(0) = 0.
In the limit of high lattice dimensions and for trans-

lationally invariant systems, the Hubbard model is char-
acterized by ρ(ε) alone, i.e., higher-order correlation func-
tions in momentum space factorize, e.g. [17],

ρq1,q2(ε1, ε2) ≡
1
L

∑
k

δ(ε1 − ε(k + q1))δ(ε2 − ε(k + q2))

= ρ(ε1)[δq1,q2δ(ε1 − ε2) + (1 − δq1,q2)ρ(ε2)].
(5)

This observation is the basis for the Random Dispersion
Approximation (RDA) which becomes exact in infinite di-
mensions for paramagnetic systems where nesting is ig-
nored [2,6]; see Section 5.

In the following, we assume a symmetric bare density
of states, ρ(−ε) = ρ(ε), of width W . For our explicit cal-
culations we shall later use the semi-circular density of
states

ρ0(ω) =
2
πW

√
4 −

(
4ω
W

)2

, (|ω| ≤W/2), (6)

where W ≡ 4t is the bandwidth. In the following, we shall
set t ≡ 1 as our energy unit if not otherwise explicitly
stated. This density of states is realized for non-interacting
tight-binding electrons on a Bethe lattice of connectivity
Z → ∞ [18], i.e., each site is connected to Z neighbors
without generating closed loops, and the electron transfer
is restricted to nearest-neighbors, ti,j = −1/

√
Z for i and

j being nearest neighbors and zero otherwise. The limit
Z → ∞ is implicitly understood henceforth.

The electrons are assumed to interact only locally, and
the Hubbard interaction reads

D̂ =
∑

i

(
n̂i,↑ −

1
2

)(
n̂i,↓ −

1
2

)
, (7)

where n̂i,σ = ĉ+i,σ ĉi,σ is the local density operator at site i

for spin σ. This leads to the Hubbard model [19],

Ĥ = T̂ + UD̂. (8)

The Hamiltonian exhibits explicit particle-hole symmetry,
i.e., Ĥ is invariant under the transformation

PH : ĉ+i,σ 	→ (−1)iĉi,σ; ĉi,σ 	→ (−1)iĉ+i,σ. (9)

For the Bethe lattice (−1)i = +1 for the A sites which
are surrounded by B sites only (and vice versa), for which
(−1)i = −1. A chemical potential µ = 0 then guarantees
a half-filled band for all temperatures [2].
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2.2 Green functions and self-energy

The time-dependent single-particle Green function at zero
temperature is given by [20]

Gσ(i, j; t) = −i〈T̂ [ĉi,σ(t)ĉ+j,σ]〉. (10)

Here T̂ is the time-ordering operator, 〈. . .〉 implies the
expectation value in the ground state with energy E0, and
(� ≡ 1)

ĉi,σ(t) = exp(iĤt)ĉi,σ exp(−iĤt) (11)

is the annihilation operator in the Heisenberg picture. For
translationally invariant systems, the Fourier transform of
the Green function is given by

Gσ(k, ω) =
∫ ∞

−∞
dt eiωt 1

L

∑
i,j

e−ik(i−j)Gσ(i, j; t). (12)

The Green function in momentum space can be expressed
in terms of the self-energy Σσ(k, ω) [20] (η = 0+),

Gσ(k, ω) =
1

ω − ε(k) −Σσ(k, ω) + iηsgn(ω)
. (13)

In the limit of infinite dimensions, the self-energy is inde-
pendent of momentum [5], Σσ(k, ω) = Σσ(ω). As we shall
further discuss in Section 3, the self-energy can be calcu-
lated in a power series in U . As shown by Luttinger [21],
it has the following properties at small frequency,

�Σσ(ω) =
(

1 − 1
Z

)
ω; 0 ≤ ω < ωc, (14)

Σσ(ω) = −γω2; 0 ≤ ω < ωc. (15)

Here 0 < Z ≤ 1, γ ≥ 0, and a low-energy cut-off ωc �W
characterize a Fermi liquid.

The local Green function Gσ(ω) is the momentum-
space average of Gσ(k, ω),

Gσ(ω) =
1
L

∑
i

∫ ∞

−∞
dt eiωtGσ(i, i; t)

=
1
L

∑
k

Gσ(k, ω)

=
∫ ∞

−∞
dερ(ε)

1
ω − ε−Σσ(ω) + iηsgn(ω)

. (16)

Due to particle-hole symmetry, the local Green function
obeys Gσ(t) = −Gσ(−t) so that Gσ(ω) = −Gσ(−ω), and
thus Σσ(ω) = −Σσ(−ω).

Because the self-energy only depends on frequency, the
local Green function can be easily recovered from the self-
energy. As seen from (16),

Gσ(ω) = G0
σ(ω −Σσ(ω)). (17)

This relation is particularly simple for the semi-circular
density of states (6) where

G0
σ(z) =

z

2

[
1 −

√
1 − 4

z2

]
, (18)

with z = ω+iηsgn(ω). For the Bethe lattice it then follows
that

ω −Σσ(ω) = Gσ(ω) +G−1
σ (ω). (19)

With the help of a full set of eigenstates |Ψn〉, we can
write the local Green function in the Lehmann represen-
tation [20]

Gσ(ω) =
∫ ∞

−∞
dω′ Dσ(ω′)

ω − ω′ + iηsgn(ω′)

Dσ(ω ≥ 0) =
∑

n

1
L

∑
i

|〈Ψ0|ĉi,σ|Ψn〉|2 δ(ω + E0 − En).

(20)

Consequently, the density of states is obtained from the
imaginary part of the local Green function (17) via

Dσ(ω) = − 1
π

sgn(ω)Gσ(ω) = Dσ(−ω). (21)

The latter equality holds due to particle-hole symmetry.
For a Fermi liquid, (14) and (15) in (17) lead to

Dσ(0) = ρ(0), (22)

i.e., the density of states at ω = 0 is pinned to its value at
U = 0 [22].

The momentsMn of the density of states are defined as

Mn = 2
∫ ∞

0

dω ωnDσ(ω). (23)

In particular, from (20), (21), and the definition of the
Green function (10) one can show that [20]

M1 = − 1
L

(
E0 + U

∂E0

∂U

)
. (24)

We will later employ this useful sum rule for calculating
the ground-state energy.

The one-particle spectral function Aσ(ε;ω) is symmet-
ric in ω. It is defined by (ω ≥ 0)

Aσ(ε;ω) = − 1
π

(

1
ω − ε−Σσ(ω) + iη

)
= − 1

π

(Σσ(ω) − η)
(ω − ε−�Σσ(ω))2 + (Σσ(ω) − η)2

.

(25)

Note that

Dσ(ω) =
∫ ∞

−∞
dε ρ(ε)Aσ(ε;ω). (26)

As follows from the Lehmann representation [20], the spec-
tral function is positive semi-definite, Aσ(ε;ω) ≥ 0, so that

Σσ(ω ≥ 0) ≤ 0. (27)

The spectral function contains a quasi-particle contribu-
tion of weight Z(U) near the Fermi energy and an inco-
herent background contribution,

Aσ(ε;ω → 0) = Z(U)δ(ω−Z(U)ε)+Ainc
σ (ε;ω → 0). (28)



494 The European Physical Journal B

The momentum distribution

nσ(ε) =
∫ 0

−∞
dωAσ(ε;ω) (29)

depends on momentum only implicitly via ε ≡ ε(k). In the
metallic phase, nσ(ε) displays a jump discontinuity at the
Fermi energy,

nσ(ε = 0−) − nσ(ε = 0+) = Z(U), (30)

as follows directly from (14), (15), (29) and the fact that
the self-energy does not depend on momentum. In the
vicinity of ε = 0, the momentum distribution takes the
form (E ≡ Z(U)ε/ωc)

nσ(E � 1) =
1 − Z(U)

2
+

2γωcZ(U)2

π
E lnE + O(E).

(31)
This is shown in Appendix A.

3 Diagrammatic perturbation theory

In this section we derive and calculate the diagrams to
second and fourth order perturbation theory in U .

3.1 Second order

The particle-hole transformation (9) can be restricted to
one spin species only. The Hamiltonian then maps onto
itself apart from a change in the sign of U . Therefore, the
Green function obeys

Gσ(ω;U) = Gσ(ω;−U), (32)

and, correspondingly, the self-energy fulfills

Σσ(ω;U) = Σσ(ω;−U). (33)

Consequently, there are no odd orders in the perturbation
expansion of the self-energy in U .

Particle-hole symmetry also guarantees that there are
no (renormalized) Hartree bubbles. A chemical potential
µ = 0 results in [2]

1
L

∑
i

〈n̂i〉 =
1
L

∑
i

〈n̂i〉0 =
1
2
, (34)

i.e., the bare Hartree diagrams are exactly canceled by def-
inition of the Hubbard interaction in (7), and, moreover,
the renormalized Hartree diagram vanishes to all orders
in perturbation theory. Lastly, there are no Fock contri-
butions because the Hubbard interaction acts between dif-
ferent spin species only.

With these simplifications, only one diagram remains
in second-order perturbation theory,

Σ
(2)
−σ(ω) =

� � � ��
�

�� � ��

��

��

�

. (35)

Three independent Green function lines connect the two
lattice points. Thus, in the limit of infinite dimensions,
they can be identified with each other [5], and each line
thus represents a local bare Green function G0

σ(ωi) =
G0

−σ(ωi) due to spin symmetry. Note, however, that en-
ergy conservation must still be obeyed at each vertex. Fol-
lowing the Feynman rules, the second-order diagram gives
the contribution [22,23]

Σ
(2)
−σ(ω) = (−1)(i)2U2

∫ ∞

−∞

dω1

2πi
G0

−σ(ω−ω1)Π0
σ(ω1) (36)

with the bare polarization bubble

Π0
σ(ω) = −

∫ ∞

−∞

dω2

2πi
G0

σ(ω2)G0
σ(ω2 + ω) = Π0

σ(−ω).

(37)
With the help of the spectral representation (16) of the
local bare Green function

G0
σ(ω) =

∫ W/2

0

dε ρ(ε)
(

1
ω − ε+ iη

+
1

ω + ε− iη

)
, (38)

a contour integration results in

Π0
σ(ω) = −

∫ W/2

0

dε1
∫ W/2

0

dε2 ρ(ε1)ρ(ε2)

×
(

1
ω − ε1 − ε2 + iη

− 1
ω + ε1 + ε2 − iη

)
. (39)

Taking the imaginary part gives

1
π
Π0

σ(ω ≥ 0) =
∫ ω

0

dε ρ(ε)ρ(ω − ε). (40)

This representation explicitly shows that the imaginary
part of the bare polarization bubble vanishes for |ω| ≥W .
This is a consequence of the fact that the bare polarization
bubble is made up of two bare Green function lines.

Using the spectral representation of the bare polar-
ization bubble (39) and of the local Green function (38)
in (36), the contour integration over ω1 can easily be per-
formed. Taking the imaginary part leads to

Σ(2)
−σ(ω ≥ 0) = −U2

∫ ω

0

dε ρ(ε)Π0
σ(ω − ε). (41)
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Fig. 1. Real and imaginary part of the second-order self-
energy; units W = 4t ≡ 1.

The imaginary part of the second-order self-energy van-
ishes for |ω| ≥ 3W/2. The Hilbert transformation provides
the real part as

�Σ(2)
−σ(ω) =

1
π
P
∫ 3W/2

0

dζ Σ(2)
−σ(ζ)

(
1

ζ − ω
− 1
ζ + ω

)
.

(42)
For practical calculations it is advisable to split the in-
tegration routines into intervals [(r − 1)W/2, rW/2] (r =
1, 2, 3) in order to speed up the integrations and to mini-
mize numerical errors.

For the density of states of the Bethe lattice (6), the
result for the real and imaginary parts of the second-order
self-energy are shown in Figure 1, apart from the prefac-
tor U2. As seen from the figure, the self-energy reproduces
the Fermi-liquid relations (14) and (15) for small frequen-
cies. Explicitly, we find from our numerical integrations

Z(U)−1 = 1 + 1.307[1]
(
U

W

)2

+ O(U4) (43)

and

γ(U) = 3.242[1]
(
U

W

)2

+ O(U4), (44)

where the number in brackets denotes the uncertainty in
the last digit.

3.2 Fourth order

The twelve topologically different diagrams to fourth or-
der can be grouped into four sets; see below. They were
used earlier by Yamada and Yosida [24] in their study of
the symmetric Anderson impurity model, and by Freericks
and Jarrell [25] in their finite-temperature perturbation
study of the Hubbard model. With the help of particle-
hole symmetry it is not difficult to show that the diagrams

3Σ
(4a)
σ (ω) =

+

+

Fig. 2. Set A of three equivalent diagrams to the proper self-
energy in fourth-order perturbation theory.

of each set give the same contribution [25]. We also find

Σ(4)
σ (ω) = 3

(
Σ(4a)

σ (ω)+Σ(4b)
σ (ω)+Σ(4c)

σ (ω)+Σ(4d)
σ (ω)

)
.

(45)
We discuss the diagrams of the four sets and their contri-
butions to the self-energy in the following.

3.2.1 Ring diagram

The ring diagram in Figure 2 and the particle-hole/par-
ticle-particle ladders give identical contributions at half
band-filling. This is most easily seen when the Feynman
rules are applied in the time domain, and particle-hole
symmetry, Gσ(t) = −Gσ(−t), is used appropriately. For
the ring diagram the Feynman rules result in

Σ(4a)
σ (ω) =

� � � ��
�

�� � ��

����

�� � ��

��

�� � ��

.

(46)
In order to evaluate this diagram, we define

P (ω) =
[
Π0

σ(ω)
]3
. (47)

Analogously to the second-order calculation, we then find

Σ(4a)
σ (ω ≥ 0) = −U4

∫ ω

0

dε ρ(ε)P (ω − ε) (48)
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3Σ
(4b)
σ (ω) =

+

+

Fig. 3. Set B of three equivalent diagrams to the proper self-
energy in fourth-order perturbation theory.

with

P (ω) = Π0
σ(ω)

[
3(�Π0

σ(ω))2 − (Π0
σ(ω))2

]
. (49)

The real part �Π0
σ(ω) is obtained via Hilbert transforma-

tion of Π0
σ(ω); see Appendix B.

3.2.2 Second-order diagram with second-order vertex
correction

The second-order diagram with second-order vertex cor-
rection in Figure 3 and the particle-hole/particle-particle
ladders with crossed interaction lines give identical contri-
butions at half band-filling. For the second-order diagram
with second-order vertex correction, the Feynman rules
result in

Σ(4b)(ω) =

� � � ��
�

��

�� � ��

� � �� � �� � � ��

�� � ��

��

.

(50)
Explicitly,

Σ(4b)
σ (ω) = U4

∫ ∞

−∞

dω1

2πi

∫ ∞

−∞

dω3

2πi
G0

σ(ω − ω1)Π0
σ(ω1)

×G0
σ(ω − ω1 − ω3)G0

σ(ω − ω3)Π0
σ(ω3). (51)

The contour integration over ω3 can be performed us-
ing the spectral representation of the bare polarization
bubble (39) and of the local Green function (38) in (51).
The remaining contour integral over ω1 then results in
24 terms, four of which are zero. When we restrict our-
selves to ω > 0 and focus on the imaginary part, another
four terms vanish. A change in integration variables shows
that six terms come in pairs. Thus, only ten different terms
need to be evaluated [26]. The calculation of the imaginary
part reduces the seven-fold integrations over the bare den-
sity of states to six-fold integrations. Fortunately, these
integrations can be grouped so that the final result can be
expressed in terms of help functions which can be tabu-
lated and used in the remaining at most two-fold integra-
tions over finite energy intervals. These help functions are
listed in Appendix B.

The ten remaining terms lead to 20 integrals which can
be expressed using the bare density of states and the help
functions. Appropriate changes in the energy integration
variables allow us to regroup them into six terms,

Σ(4b)
σ (ω ≥ 0) = πU4

6∑
i=1

Ii (52)

with

I1 = −
∫ W

0

da h(a)
∫ W

0

db h(b)

× ρ̃(ω − a− b)l(b− ω)l(a− ω), (53)

I2 = − 2
∫ W

0

db h(b)
∫ W/2

0

dε1ρ(ε1)h(ω − ε1)

× [f(b− ω)f(b− ε1) + f(b+ ω)f(b+ ε1)] , (54)

I3 =2
∫ W

0

da h(a)ρ̃(ω − a)
∫ W/2

0

dε1ρ(ε1)f(ε1 + a)

× [H(ε1 + a− ω) +H(ω + ε1)] , (55)

I4 =π2

∫ W

0

da h(a)
∫ W

0

db h(b)ρ̃(ω − a)ρ̃(ω − b)

× [ρ̃(ω − a− b) − ρ̃(a+ b− ω)] , (56)

I5 =2
∫ W/2

0

dε1ρ(ε1)
∫ W/2

0

dε2ρ(ε2)h(ω − ε1)

× f(ε1 + ε2 − ω) × [H(ε1 + ε2) +H(ε2 − ω)] ,
(57)

I6 =
∫ W/2

0

dε1ρ(ε1)
∫ W/2

0

dε2ρ(ε2)ρ̃(ω − ε1 − ε2)

×
[
2H(ε2 − ω)H(ε1 + ε2) +H(ω − ε2)H(ε1 + ε2)

+H(ε1 − ω)H(ε2 − ω)
]
, (58)

where ρ̃(x) = ρ(x)Θ(x). For practical calculations, it is
advisable to split the integration routines into intervals
[(r−1)W/2, rW/2] (r = 1, . . . , 5) in order to speed up the
integrations and to minimize numerical errors. We have
checked our results against a numerical integration in the



F. Gebhard et al.: Fourth-order perturbation theory for the half-filled Hubbard model in infinite dimensions 497

3Σ
(4c)
σ (ω) =

+

+

Fig. 4. Set C of three equivalent diagrams to the proper self-
energy in fourth-order perturbation theory.

time domain which is easier to implement but much less
accurate for the same computational effort.

3.2.3 Second-order diagram with vertex correction
in the polarization bubble

The second-order diagram with vertex correction in the
polarization bubble in Figure 4 and the particle-hole/par-
ticle-particle ladders with crossed interaction lines give
identical contributions at half band-filling. For the second-
order diagram with second-order vertex corrections in the
polarization bubble, the Feynman rules result in

Σ(4c)
σ (ω) =

� � � ��
�

��

�� � �� � ���� � ��

�� � ��

�� � ����

(59)
Obviously, we may split off the renormalized polarization
bubble. Analogously to the second-order calculation, we
immediately arrive at

Σ(4c)
σ (ω ≥ 0) = −U4

∫ ω

0

dερ(ε)ΠV(ω − ε) (60)

with

ΠV(x) = −
∫ ∞

−∞

dω2

2πi

∫ ∞

−∞

dω4

2πi
G0

σ(ω4)G0
σ(ω4 − x)

×G0
σ(ω4 − ω2)G0

σ(ω4 − x− ω2)Π0
σ(ω2), (61)

which is symmetric in x.
Using the spectral representation of the bare polar-

ization bubble (39) and of the local Green function (38)
in (61), the contour integration over ω2 results in six non-
vanishing terms. The remaining contour integral over ω4

then gives 24 terms of which seven are zero, and four come
in pairs. Of the remaining 13 terms, five do not provide a
finite imaginary part for x ≥ 0. A re-grouping of integra-
tion variables shows that only five different terms remain
for x ≥ 0,

ΠV(x) =2
∫ ∞

0

dε1ρ(ε1) . . .
∫ ∞

0

dε6ρ(ε6)

×
{

1
x+ ε1 + ε3 + ε4 + ε6

1
ε1 + ε3 + ε4 + ε5

× 1
x+ ε1 − ε2 − iη1sgn(ε1 − ε2)

+
1

x− ε2 − ε3 − ε4 − ε5+iη3
1

ε2 + ε3 + ε4+ε6

× 1
x+ ε1 − ε2 − iη1sgn(ε1 − ε2)

+ 2
1

x−ε1−ε2 + iη1
1

x−ε2−ε3−ε4 − ε5 + iη5

× 1
ε2 + ε3 + ε4 + ε6

+ 2
1

x− ε1 − ε2 + iη1
1

x+ ε5 + ε6 − iη2

× 1
ε2 + ε3 + ε4 + ε6

+
1

x− ε1 − ε2 + iη1
1

x− ε5 − ε6 + iη2

× 1
x− ε2 − ε3 − ε4 − ε5 + iη3

}
. (62)

Taking the imaginary part simplifies this expression. First,
the terms with the common factor sgn(ε1−ε2)δ(x+ε1−ε2)
cancel each other. Second, we are left with five-fold in-
tegrations over finite intervals. Third, these expressions
can be simplified further using the help functions of Ap-
pendix B. We find

ΠV(x ≥ 0) = −2π
7∑

i=1

Ji (63)
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with

J1 =
∫ W/2

0

dε2
∫ W

0

dy

× h(y)ρ(ε2)ρ̃(x− ε2 − y)f(x− ε2)f(ε2 + y), (64)

J2 = − 2
∫ W/2

0

dε2
∫ W

0

dy

× h(y)ρ(ε2)ρ̃(x− ε2)f(ε2 + y − x)f(ε2 + y), (65)

J3 = − 2
∫ W/2

0

dε2
∫ W

0

dy

× h(y)ρ(ε2)ρ̃(x− ε2 − y)f(ε2 − x)f(ε2 + y), (66)

J4 =2
∫ W/2

0

dε2
∫ W/2

0

dε6

× ρ(ε2)ρ(ε6)ρ̃(x− ε2)f(x+ ε6)H(ε2 + ε6), (67)

J5 =2
∫ W/2

0

dε2
∫ W/2

0

dε5

× ρ(ε2)ρ(ε5)ρ̃(x− ε2)f(ε5 − x)H(ε2 + ε5 − x),(68)

J6 =
∫ W/2

0

dε2
∫ W/2

0

dε5

× ρ(ε2)ρ(ε5)f(ε2 − x)f(ε5 − x)h(x − ε2 − ε5), (69)

J7 = − π2

∫ W/2

0

dε2
∫ W/2

0

dε5

× ρ(ε2)ρ(ε5)ρ̃(x− ε2)ρ̃(x − ε5)h(x− ε2 − ε5), (70)

where ρ̃(x) = ρ(x)Θ(x). For practical calculations it is
advisable to split the integration routines into intervals
[(r−1)W/2, rW/2] (r = 1, . . . , 4) in order to speed up the
integrations and to minimize numerical errors. We have
checked our results against a numerical integration in the
time domain.

3.2.4 Second-order diagram with second-order self-energy
insertion

The second-order diagrams with self-energy insertion in
Figure 5 give identical contributions in the paramagnet
at half band-filling. These diagrams are not skeleton dia-
grams so that momentum conservation cannot be ignored
at the inner vertices.

3Σ
(4d)
σ (ω) =

+

+

Fig. 5. Set D of three equivalent diagrams to the proper self-
energy in fourth-order perturbation theory.

For the second-order diagram with self-energy inser-
tion, the Feynman rules result in

Σ(4d)
σ (ω) = �

�
���
��

�� � ���

� � ��

�

� � ��

�

�

��

�� � ��

.

(71)
Obviously, we may use the results for the bare polarization
bubble and the second-order self-energy to simplify the
expression to the form

Σ(4d)
σ (ω) = U2

∫ ∞

−∞

dω1

2πi
Π0

σ(ω1)Σ(2)
σ (ω − ω1)

× 1
L

∑
k

[G0
σ(ε(k);ω − ω1)]2. (72)
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Fig. 6. Imaginary part of the fourth-order self-energy dia-
grams; units W = 4t ≡ 1.

We must evaluate

1
L

∑
k

[G0
σ(ε(k);x)]2 = A+(x) +A−(x), (73)

with

A±(x) =
∫ W/2

0

dyρ(y)
1

x∓ y ± iη3
1

x∓ y ± iη4
. (74)

We may set η3 = η4 later so that A±(x) may be expressed
in terms of ρ(0) and the derivative of the bare density of
states, d(x) = (dρ(x))/(dx).

The spectral representations of A±(x) in (74), Π0
σ(ω)

in (128), and Σ
(2)
σ (ω) in (131) allow us to perform the

contour integral over ω1 in (72) with the result

Σ(4d)
σ (ω) = πU4

W/2∫
0

dxd(x)h(ω − x)[S(x) − S(−x)]

+ πU4

∫ 3W/2

0

db s(b)h(ω − b)l′(b), (75)

where l′(b) denotes the derivative of the help function l(b),
see (124). Again, it is advisable to split the integration
routines into intervals [(r − 1)W/2, rW/2] (r = 1, . . . , 5)
in order to speed up the integrations and to minimize nu-
merical errors.

The result for the real and imaginary parts of the
fourth-order diagrams are shown in Figure 6, apart from
the prefactor U4. As seen from the figure, the diagrams
are equally important. At half band-filling there is gen-
erally no reason to include only special diagram classes,
as done, e.g., in the RPA or in the ladder approximation.
In particular, for small ω the contribution of the fourth-
order ring diagram is to a large extent canceled by the two
diagrams with vertex corrections.

Figure 7 shows the real and imaginary parts of the
fourth-order self-energy, apart from the prefactor U4.

Fig. 7. Real and imaginary part of the fourth-order self-
energy; units W = 4t ≡ 1.

The self-energy reproduces the Fermi-liquid relations (14)
and (15) for small frequencies. Explicitly, we find from our
numerical integrations

Z(U)−1 = 1 + 1.307[1]
(
U

W

)2

+ 0.739[1]
(
U

W

)4

+O(U6)

(76)
and

γ(U) = 3.242[1]
(
U

W

)2

+4.197[1]
(
U

W

)4

+O(U6), (77)

where the number in brackets denotes the uncertainty
in the last digit. The prefactor of the fourth-order
term in [Z(U)]−1 is smaller than reported in [6].
There, the momentum distribution was calculated us-
ing Rayleigh-Schrödinger stationary perturbation theory.
We suspect that stationary perturbation theory is flawed
when diagrams with self-energy insertions as in (71) occur.

Figure 7 shows that the fourth-order contribution to
the self-energy becomes positive for 0.7W ≤ ω ≤ 1.1W .
For small interaction strengths this positive contribution
is compensated by the overall negative second-order self-
energy. The sum of both terms is no longer negative for
all frequencies above U = 0.64W , in contrast to the exact
result (27). This limits the applicability of fourth-order
perturbation theory to moderate interactions strengths.

3.3 Ground-state energy and average double
occupancy

The ground-state energy can also be expanded in terms
of powers in (U/W )2,

E0

L
= −2W

3π
+ αW

(
U

W

)2

+ βW

(
U

W

)4

+O(U6). (78)

We use this expansion in (24) and obtain

M1 =
2W
3π

− 3αW
(
U

W

)2

− 5βW
(
U

W

)4

+O(U6). (79)
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On the other hand, we may use (23) into which we insert
the density of states from (21) which we can express in
terms of the self-energy with the help of (17) and (18).
For a better numerical accuracy, we calculate

a =
∫ 3W/2

0

dω ω
[
−Σ(2)

σ (ω) −
√[

ω −Σ
(2)
σ (ω)

]2 − 4

+
√
ω2 − 4

]
, (80)

b =
∫ 5W/2

0

dω ω
[
−Σ(4)

σ (ω) +
√[

ω −Σ
(2)
σ (ω)

]2 − 4

+Σ(2)
σ (ω) −

√[
ω −Σ

(2)
σ (ω) −Σ

(4)
σ (ω)

]2 − 4
]
.

(81)

We fit the results to the form a = a0(U/W )2 +a1(U/W )4,
and b = b0(U/W )4 + b1(U/W )6, and obtain for α =
a0/(3π) and β = b0/(5π)

α = − 0.08346[1], (82)

β = − 0.0062[2]. (83)

The prefactor of the fourth-order term, β, is an order
of magnitude smaller than the second-order prefactor, α.
This is very similar to the result for the single-impurity
Anderson model addressed by Yamada and Yosida [24].
Therefore, we expect that the ground-state energy is rea-
sonably well-described by fourth-order perturbation the-
ory up to U ≤W .

Starting from

d(U) =
1
4

+
1
L
〈D̂〉 =

1
4

+
1
L

∂E0

∂U
(84)

we obtain the fourth-order result

d(U) =
1
4

+ 2α
(
U

W

)
+ 4β

(
U

W

)3

+ O(U5)

=0.25 − 0.16692[2]
(
U

W

)
− 0.0248[8]

(
U

W

)3

+ O(U5) (85)

for the average double occupancy at half band-filling. The
average double occupancy is positive semi-definite. This
criterion excludes the applicability of (85) for interaction
strengths U ≥ 1.12[1]W .

An even more stringent condition can be drawn
from a comparison with the ground-state energy of the
Mott-Hubbard insulator at half band-filling [14]. Up to
third-order in 1/U ,

E0

L
= −U

4
− W 2

32U
− W 4

512U3
+ O(U−5), (86)

and

d(U) =
1
32

(
W

U

)2

+
3

512

(
W

U

)4

+ O(U−6). (87)

If we use the 1/U -expansion down to U ≥W , we find that
the average double occupancy from the expansion in U
and in 1/U become equal at the crossing point Ucross =
1.056W . Note that in [14] we estimated Uc,1 = 1.105[10]W
for the opening of the gap. The fact that Ucross ≈ Uc,1

might indicate that the Mott-Hubbard transition is indeed
continuous at Uc,1 ≡ Uc without a discontinuity in the
average double occupancy.

Within perturbation theory, the ground-state energies
from weak and strong coupling do not become equal. Fur-
ther terms in the 1/U expansion are also negative, so
that equation (86) appears to give an upper bound to
the ground-state energy. On the other hand, the pertur-
bation expansion in U gives a maximum in E0(U) at U =
1.12[1]W and thus provides a lower bound around U = W .
Therefore, comparing energies from perturbation expan-
sions will always result in a lower ground-state energy for
the ‘metal’ (expansion in U) than for the ‘insulator’ (ex-
pansion in 1/U). In the above case we find the minimum
energy difference at Ucross, ∆E0(Ucross)/L = 0.018[1]W .

Further observables will be discussed in Sections 4
and 5.

4 Dynamical mean-field theory (DMFT)

In this section, we summarize the Dynamical Mean-Field
Theory and two of its numerical implementations. The
self-consistent solution of the single-impurity Anderson
model is carried out by the Fixed-Energy Exact Diagonal-
ization (FE-ED) [14] and the Dynamical Density-Matrix
Renormalization Group (DDMRG) [15,16]. We compare
our results for the density of states from perturbation
theory with those from FE-ED, DDMRG, the Numerical
Renormalization Group (NRG) [10], and Iterated Pertur-
bation Theory (IPT).

4.1 Single-impurity anderson model

In the limit of infinite dimensions [5] and under the con-
ditions of translational invariance and convergence of per-
turbation theory in strong and weak coupling, lattice
models for correlated electrons can be mapped onto single-
impurity models [27,28,3], which must then be solved self-
consistently. In general, these impurity models cannot be
solved analytically.

For an approximate numerical treatment various dif-
ferent implementations are conceivable. One realization is
the single-impurity Anderson model in the ‘star geome-
try’,

ĤSIAM =
ns−1∑
�=1;σ

ε�ψ̂
+
σ;�ψ̂σ;� + U

(
d̂+
↑ d̂↑ −

1
2

)(
d̂+
↓ d̂↓ −

1
2

)

+
∑

σ

ns−1∑
�=1

V�

(
ψ̂+

σ;�d̂σ + d̂+
σ ψ̂σ;�

)
, (88)
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where V� are real, positive hybridization matrix elements.
The model describes the hybridization of an impurity site
with an on-site Hubbard interaction to ns − 1 bath sites
without interaction at energies ε1 < ε2 < . . . < εns−1. In
order to preserve particle-hole symmetry, we must choose
εns−� = −ε�, and Vns−� = V� for � = 1, . . . , ns−1. For even
ns, this implies that there is an energy level at εns/2 = 0,
i.e., at the impurity level. For this bath site, which is ab-
sent for odd ns, we expect particularly strong hybridiza-
tion with the impurity level, so that large odd-even effects
can be expected.

For a given set of parameters (ε�, V�) the model (88)
defines a many-body problem for which the one-particle
Green function

G(ns)
σ (t) = −i

〈
T̂
[
d̂σ(t)d̂+

σ

]〉
SIAM

(89)

must be calculated numerically. Here, 〈. . .〉SIAM implies
the ground-state expectation value within the single-im-
purity Anderson model. The various implementations of
the DMFT differ in the choice of this ‘impurity solver’ [29],
denoted, e.g., as DMFT(FE-ED) or DMFT(DDMRG).

Ultimately, we will be interested in the limit ns → ∞
where the hybridization function

H(ns)(ω) =
ns−1∑
�=1

V 2
�

ω − ε� + iηsgn(ω)
(90)

is required to approach the hybridization function of the
continuous problem smoothly,

H(ω) = lim
ns→∞H(ns)(ω). (91)

Correspondingly, the Green function is required to fulfill

Gσ(ω) = lim
ns→∞G(ns)

σ (ω). (92)

At self-consistency the Green function of the impurity
problem describes the Hubbard model in infinite dimen-
sions. As shown in [3], the hybridization function must
obey the simple relation

H(ω) = Gσ(ω) (93)

on the Bethe lattice. This equation closes the self-con-
sistency cycle for the continuous problem: bath energies
and hybridizations must be chosen in such a way that the
one-particle Green function and the hybridization function
fulfill (93).

4.2 Fixed-energy exact diagonalization (FE-ED)

In the FE-ED [14] for the metallic state, we choose to
resolve the density of states within the frequency inter-
val |ω| ≤ W ∗/2. To this end, we partition the effec-
tive bandwidth W ∗ into equidistant intervals of width
δW = W ∗/(ns − 1),

I� = [−W ∗/2+ (�− 1)δW,−W ∗/2+ �δW ], 1 ≤ � ≤ ns − 1.
(94)

The energy levels are now fixed at the centers of I�,

ε� = −W ∗/2 + (�− 1/2)δW, 1 ≤ � ≤ ns − 1. (95)

For our calculations we choose W ∗ = 9t = 2.25W which
is sufficient to resolve the main features of the density of
states (quasi-particle peak, Hubbard bands) for weak to
intermediate coupling strengths, U ≤ W . In the FE-ED,
we can be sure that our resolution increases systematically
as a function of 1/ns which cannot be guaranteed in the
Caffarel-Krauth implementation of the exact diagonaliza-
tion [3,9,13,30].

For ns ≤ 15, we determine the impurity Green function
using the (dynamical) Lanczos technique. The imaginary
part of the Green function displays nL peaks depending
on the number nL ≈ 100 states kept in the Lanczos di-
agonalization. We apply a constant broadening of width
δW to the individual peaks in G(ns)

σ (ωr), r = 1, . . . , nL.
We then collect the weight into the intervals I� and assign
this weight to w� = V 2

� . Typically, the weight of the peaks
at energies |ωr| > W ∗/2 is very small. Thus we set

w� =
∫

I�

dω
nL∑
r=1

G(ns)
σ (ωr)

× Θ(ω − ωr + δW/2) −Θ(ω − ωr − δW/2)
δW

. (96)

In order to generate an educated input guess for V� =√
w�, we use the results from fourth-order perturbation

theory in (96). In the FE-ED, the self-consistency cycle is
stable, i.e., different input choices result in the same self-
consistent solution for a given ns. This is not guaranteed
in the Caffarel-Krauth exact-diagonalization scheme, as
shown for the Mott-Hubbard insulator in [14]. The reason
for the stability of the FE-ED is that the energies ε� are
kept fixed. The ns substantial peaks in G(ns)

σ (ωr) carry
sufficient information to determine the ns hybridization
matrix elements V�. However, these ns peaks are not suf-
ficient to determine 2ns parameters (ε�, V�) uniquely.

Figure 8 shows the converged hybridization function
in FE-ED for ns = 14 and ns = 15 for U = 0.4W = 1.6t,
in comparison with the results for the density of states
from fourth-order perturbation theory. It is seen that the
agreement is very good.

As seen in Figure 9, deviations are noticeable for
U = 0.6W = 2.4t. Unfortunately, the resolution δW =
9t/14 ≈ 0.16W is still rather limited, and finite-size ef-
fects are appreciable around ω = 0.5W . Therefore, it is
unclear whether the differences in Dσ(ω) between FE-ED
and perturbation theory around ω = 0.5W are due to
finite-size effects of the FE-ED, or due to missing sixth-
order terms in the perturbation expansion. The DDMRG
which is able to treat much bigger systems allows us to
resolve this issue.
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Fig. 8. Hybridization function H(ns)(ω) for ns = 14 (cir-
cles) and ns = 15 (squares) in comparison with the density
of states from fourth-order perturbation theory at U = 0.4W
(solid line); units W = 4t ≡ 1.
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Fig. 9. Hybridization function H(ns)(ω) for ns = 14 (cir-
cles) and ns = 15 (squares) in comparison with the density
of states from fourth-order perturbation theory at U = 0.6W
(solid line); units W = 4t ≡ 1.

4.3 Dynamical density-matrix renormalization group
(DDMRG)

The Density-Matrix Renormalization Group (DMRG) is
a numerical method in which the energy functional

E(|Ψ〉) = 〈Ψ |Ĥ |Ψ〉 (97)

is minimized variationally in the subspace of normalized
states 〈Ψ |Ψ〉 = 1. This is done by carrying out a numerical
diagonalization on a system of finite size and a renormal-
ization on a part of this system. At each step of the renor-
malization,m density-matrix eigenstates of the subsystem
are kept to build a variational basis of dimension O(m2);
for a review, see [31]. The optimal state for a given m,
|Ψ〉opt, provides a variational bound for the ground-state

energy, Evar
0 = opt〈Ψ |Ĥ |Ψ〉opt. For one-dimensional lattice

systems, this method provides a highly accurate estimate
for ground-state properties of hundreds of interacting elec-
trons. The accuracy of the energy, Evar

0 = E0 + O(ε2),
is better than that of the variational ground state itself,
|Ψ〉opt = |Ψ0〉 + O(ε). Typically, the error ε2 scales as the
weight Pm of the discarded density-matrix eigenstates.

In DDMRG [15], this concept is generalized to the min-
imization of a frequency-dependent functional. For the lo-
cal Green function and ω ≥ 0, it reads

Wη(|Ψ〉;ω) =
〈
Ψ |
(
E0 + ω − Ĥ

)2

+ η2|Ψ
〉

+ η 〈Ψ0|ĉi,σ|Ψ〉 + η
〈
Ψ |ĉ+i,σ|Ψ0

〉
. (98)

Here the frequency ω is fixed for an individual DDMRG
run. The optimal state |Ψ〉opt is the imaginary part of
the so-called correction vector. The optimal functional be-
comes

W opt
η (ω) = −η2〈Ψ0|ĉi,σ

[(
E0 + ω − Ĥ

)2

+ η2
]−1

ĉ+i,σ|Ψ0〉

= −η2
∑

n

|〈Ψ0|ĉi,σ|Ψn〉|2

(E0 + ω − En)2 + η2
, (99)

where |Ψn〉 and En are the exact eigenstates and ener-
gies of the Hamiltonian. The spectral representation (20)
shows that, in the thermodynamic limit and up to a fac-
tor of −πη, the DDMRG provides the exact local density
of states at frequency ω, convolved with a Lorentzian of
width η,

Dη
σ(ω) = − 1

πη
W opt

η (ω). (100)

The main advantage of this variational approach is that, as
in the ground-state energy calculations, the optimal value
of the functional (i.e., the density of states) is obtained
with an accuracy of the order of ε2 if the optimal state
|Ψ〉opt is calculated with an accuracy ε.

As the DMRG method is most accurate for systems
with a quasi one-dimensional structure, we perform calcu-
lations of the single-impurity Anderson model (88) in its
equivalent linear-chain form [32]

ĤSIAM =U
(
d̂+
↑ d̂↑ −

1
2

)(
d̂+
↓ d̂↓ −

1
2

)
+ V

∑
σ

(
f̂+

σ;0d̂σ + d̂+
σ f̂σ;0

)
+
∑

σ

ns−2∑
�=0

λ�

(
f̂+

σ;�f̂σ;�+1 + f̂+
σ;�+1f̂σ;�

)
. (101)

The DDMRG provides the exact local density of states
for a finite chain with ns sites. To obtain the spectrum
of an infinite chain, the broadening η must be scaled as a
function of the system size [15]. If η is chosen too small, the
DDMRG density of states displays finite-size peaks. If η is
chosen too large, relevant information is smeared out. As
an empirical fact, η ≈ W ∗/ns should be chosen, i.e., the
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resolution scales as the inverse system size, as found for
one-dimensional lattice models. The DDMRG technique
for the single-impurity Anderson model will be described
in more detail elsewhere [16].

In the DDMRG extension of the FE-ED, the limita-
tions of the Lanczos technique are overcome in two ways.
First, we may use bigger systems. The DDMRG can han-
dle ns = 64 sites on a workstation (m = 300 states kept
in the renormalization) with CPU time as the limiting
factor (48 hrs on a 500 MHz DEC-alpha workstation). In
contrast, the exact diagonalization studies are seriously
limited by memory constraints (3 GByte of memory for
ns = 15).

Second, the DDMRG provides the density of states
at selected frequencies ωi. Typically, we choose them to
resolve the effective bandwidth W ∗ equidistantly, ωi+1 −
ωi = δω ≈ η ≈ δW . We then ‘deconvolve’ the DDMRG
data by inverting the Lorentz transformation

Dη
σ(ωi) =

∑
j

δω

π

η

η2 + (ωi − ωj)2
Dσ(ωj). (102)

The procedure can be repeated for different choices of the
equidistant frequencies ωi to get more values of Dσ(ωj).
In this way, the DDMRG provides a set of values Dσ(ωj)
for the density of states which, for the same ns, is at least
as dense as the set from the Lanczos diagonalization. In
practice, we use from one to four different sets of fre-
quencies, corresponding to a frequency resolution from η
to η/4. Naturally, structures with an intrinsic width of
less than η cannot be resolved with this procedure even if
we use different sets of frequencies. The main advantage
of this transformation, however, is that no extrapolation
or scaling analysis of these values Dσ(ωj) is necessary be-
cause they converge very quickly to the ns → ∞ limit.
Therefore, with DDMRG we obtain a more accurate dis-
crete representation of the density of states for a given ns

than within the Lanczos FE-ED.
An example for the non-interacting case is shown in

Figure 10, where we have chosen ns = 64, W ∗ = 5t,
δW = W ∗/63, and δω = η = 0.1t. This is a relevant test of
accuracy because the non-interacting single-impurity An-
derson model poses a non-trivial problem to DDMRG [16].
As seen in Figure 10, there is an excellent agreement be-
tween the ‘deconvolved’ numerical data for ns = 64 and
the exact result for ns → ∞.

The density of states from DDMRG and fourth-order
perturbation theory also agree very nicely for U = 0.4W ,
as is seen in Figure 11. This result confirms the reliability
of both the DDMRG and our perturbation theory at weak
coupling.

The agreement is not perfect for U = 0.6W , as seen
in Figure 12. The DDMRG is applicable at all interaction
strengths, it is limited only by finite-size effects (resolution
η ∝ 1/ns). Therefore, the deviations must be attributed to
the sixth-order contributions which are missing in our per-
turbation expansion. The magnitude of the discrepancies
around ω = 0.7W is indeed consistent with corrections of
the order 0.62 = 36% relative to the fourth-order term,
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Fig. 10. Density of states for U = 0 from DDMRG on ns =
64 sites, compared with the bare density of states ρ0(ω) (6)
(full line); units W = 4t ≡ 1. Squares: data from DDMRG for
δω = η = 0.1t. Circles: DDMRG result after deconvolution.
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Fig. 11. Density of states for U = 0.4W from DDMRG on
ns = 32 sites after deconvolution (circles), compared with
fourth-order perturbation theory (full line); units W = 4t ≡ 1.

which dominates the second-order term around these fre-
quencies. Therefore, we are confident that the DDMRG
provides reliable results for all interaction strengths within
its resolution limitations.

4.4 Numerical renormalization group (NRG)

The Numerical Renormalization Group (NRG) is a tech-
nique which aims to resolve accurately the self-energy and
the density of states near ω = 0. To this end, an exact di-
agonalization of the single-impurity model is performed
at the nth step of the renormalization procedure for a
frequency-interval In

ω around ω = 0. The width of the
frequency interval is cut in half at the next step of the
renormalization procedure, starting at I0

ω = W ∗. There-
fore, features near ω = 0 are resolved with exponentially
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Fig. 12. Density of states for U = 0.6W from DDMRG on
ns = 32 sites after deconvolution (circles), compared with
fourth-order perturbation theory (full line); units W = 4t ≡ 1.

increasing accuracy whereas higher frequencies are rep-
resented by a few peaks which are broadened on a log-
arithmic scale [10]. As a result of this logarithmic mesh
for the bath energies ε�, frequencies of the order of the
Hubbard bands are resolved with a rather limited accu-
racy. Note that weight from the broadened Hubbard bands
enters the low-energy physics again through the iterative
self-consistency procedure.

Figure 13 shows the comparison of the self-energies
from NRG and fourth-order perturbation theory for U =
0.4W . At intermediate to large frequencies, the NRG does
not reproduce the fingerprints of the Hubbard bands as al-
ready seen in perturbation theory. The same quantitative
differences are found for the real part of the self-energy.

As a consequence, the density of states in NRG does
not show any signs of the Hubbard bands at U = 0.4W , in
contrast to the exact result. Figure 14 shows the density
of states from NRG as compared with perturbation theory
for U = 0.4W and U = 0.6W . Even at U = 0.6W , where
the Hubbard bands are clearly visible, the NRG displays
only a small shoulder. We conclude that the NRG has
problems at frequencies of the order of the Hubbard bands
whose height and positions cannot be determined reliably.

4.5 Iterated Perturbation Theory (IPT)

The IPT approximation to the self-energy of the Z → ∞
Bethe lattice is given by [35,36]

ΣIPT
σ (ω) = U2

∫ ∞

−∞

dΩ
2πi

Π(Ω)Gσ(ω −Ω). (103)

Here, Gσ(ω) is the host Green function

Gσ(ω) =
1

ω −Gσ(ω)
(104)
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Fig. 13. Real and imaginary parts of the self-energy from
NRG for U = 0.4W (dashed line), compared with fourth-order
perturbation theory (full line) [33]. Also shown is the second-
order self-energy (dotted line); units W = 4t ≡ 1.

and we have defined

Π(ω) = −
∫ ∞

−∞

dω1

2πi
Gσ(ω1)Gσ(ω1 − ω) (105)

as the polarization bubble of the host Green functions.
By construction, IPT reduces to second-order pertur-

bation theory in the limit of weak coupling. However, it
omits the fourth-order diagrams with vertex corrections
shown in Figures 3 and 4, whereas it weighs the other di-
agrams differently. Thus, it is uncontrolled at moderate
interaction strengths.

Figure 14 shows the density of states from IPT for
U = 0.4W and U = 0.6W in comparison with fourth-order
perturbation theory. It is seen that the IPT does surpris-
ingly well at weak coupling considering that it is exact
only to O(U2). In this limit and for half band-filling, it
appears to be superior to the results from NRG. However,
it does not reproduce the height of the Hubbard bands
correctly.
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Fig. 14. Density of states for U = 0.4W and U = 0.6W from
NRG (dashed lines) [33], IPT (dotted lines) [34], and fourth-
order perturbation theory (full lines); units W = 4t ≡ 1.

5 Random dispersion approximation

In this section, we present numerical results from the
Random Dispersion Approximation (RDA). It becomes
exact for lattice electrons in high dimensions. In con-
trast to the FE-ED, DDMRG, or NRG, it is not based
on the DMFT self-consistency equations. Moreover, the
RDA does not require the convergence of the perturbation
expansion. Therefore, it provides an independent check of
the validity of perturbation theory and the DMFT ap-
proach.

5.1 Method

In the Random Dispersion Approximation, the dispersion
relation ε(k) in the kinetic energy is replaced by a random
quantity εRDA(k) where the bare density of states acts as
the probability distribution,

ρ(ε) =
1
L

∑
k

δ(ε− εRDA(k)), (106)

and all correlation functions factorize according to (5),
etc. This is the characteristic property of the dispersion
relation in infinite dimensions [2,6], so that the RDA with
the semi-elliptic density of states (6) becomes exact for
the Bethe lattice with infinite coordination number.

In order to put this idea into practice, we choose a
one-dimensional lattice of L sites in momentum space

k� =
2π
L

(
−L+ 1

2
+ �

)
, (� = 1, . . . , L), (107)

and determine the dispersion relation ε(k) as the solution
of the implicit equation

k/2 = (2ε(k)/W ) [1− (2ε(k)/W )2]1/2 + arcsin (2ε(k)/W ) .
(108)

This choice guarantees ρ(ε) = ρ0(ε) in the thermodynamic
limit.

Next, we choose a permutation Qσ for each spin di-
rection σ which permutes the sequence {1, . . . , L} into
{Qσ[1], . . . ,Qσ[L]}. This defines a realization of the RDA
dispersion, Q = [Q↑,Q↓]. The numerical task is then the
Lanczos diagonalization of the Hamiltonian

ĤQ =
∑

σ

L∑
�=1

ε(kQσ [�])ĉ+k�,σ ĉk�,σ + UD̂. (109)

In this way we obtain the momentum distribution

nQ(ε;U) =
1
2

∑
σ

〈n̂k�,σ〉
∣∣∣
ε(k�)=ε

, (110)

where 〈. . .〉 denotes the ground-state expectation value for
the realization Q.

As a next step, we obtain all physical quantities for
fixed system size L by averaging over NQ realizations Q.
Typically, we choose at least NQ = 100 for 6 ≤ L ≤ 14,
and NQ = 50 for L = 16. For the physical quantities,
we obtain Gaussian-shaped distributions for which we can
determine the average values, e.g.,

n(ε;U) =
1
NQ

∑
Q
nQ(ε;U) (111)

with accuracy O(1/NQ).
In order to improve the quality of our distributions

slightly, we impose a filter on our randomly chosen permu-
tations. For a truly random dispersion, L|tRDA(�)|2 = ε2

is independent of � [2]. Therefore, we discard those real-
izations for which

L−1∑
�=1

[
|tQσ (�)|2 − ε2

]2
> dL (112)

with dL ≈ 0.2 for L ≤ 16. In this way, we admit about
every second of the randomly chosen configurations. Note
that there are of the order of (L!)2 different realizations
so that our filter does not introduce any unwanted bias.
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Fig. 15. Momentum distribution in RDA for U = W/π ≈
0.32W , U = 2W/π ≈ 0.64W , and U = 5W/(2π) ≈ 0.80W for
even system sizes L ≤ 16. The lines are the result from fourth-
order perturbation theory. Note the weak ε ln ε behavior near
the discontinuity.

5.2 Momentum distribution

Figure 15 shows the RDA momentum distribution in com-
parison with results from perturbation theory. As seen
from the figure, finite-size effects are rather small in the
metallic phase. All values for the momentum distribution
appear to fall onto almost the same curve. For small in-
teraction strengths, the RDA data lie essentially on top
of the perturbative results. Deviations for larger interac-
tions can be attributed to missing higher-order corrections
to our fourth-order result. Nevertheless, it is quite aston-
ishing that fourth-order perturbation theory provides a
sensible description of the momentum distribution for in-
teraction strengths as large as U ≈ 0.8W .

In Figure 16 we compare our results for the momentum
distribution at U = 0.6W from fourth-order perturbation
theory with those from IPT and NRG. We see that both
approaches describe the momentum distribution very well
despite their shortcomings for the self-energy at interme-
diate frequencies. Apparently, for small to intermediate
coupling strengths, the overall momentum distribution is
not a very sensitive test for the quality of an approxima-
tion to the self-energy at intermediate frequencies.

A more sensitive quantity is the discontinuity of the
momentum distribution at ε = 0, see (30). Within the
RDA, the quasi-particle weight for a given system size
and U/W is obtained by fitting the momentum distribu-
tion n(ε;U) with a Fermi-liquid form (31) including the
additional linear term. The resulting quasi-particle weight
Z(U ;L) is displayed in Figure 17 for different U/W . These
system-size dependent values are extrapolated to the ther-
modynamic limit by fitting to a second-order polynomial
in 1/L for each U . Using a different form for the fit (such

Fig. 16. Momentum distribution for U = 0.6W in IPT (dotted
line) [34], NRG (dashed line) [33], and fourth-order perturba-
tion theory (full line). The deviations of NRG near the jump
result from a small but finite positive imaginary part of the
NRG self-energy around ω = 0.

Fig. 17. Quasi-particle weight as a function of the inverse
system size 1/L for U/W = 0.32, 0.64, 0.80, and 0.95 for the
RDA. The solid lines indicate fits to second-order polynomials
in 1/L.

as a linear form) or excluding points for smaller system
sizes lead to unsatisfactory results for small U . Note that
the data and fitting methods of Figure 17 are the same
as in Figure 4 of reference [6] except that the system size
L = 16 has been added and additional configurations for
L = 14 are included.
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Fig. 18. Quasi-particle weight as a function of U/W in IPT
(dotted line) [34], NRG (filled circles) [33], RDA (squares), and
fourth-order perturbation theory (full line).

In Figure 18 we show the quasi-particle weight as a
function of U/W as obtained from IPT, NRG, RDA, and
fourth-order perturbation theory. For fourth-order pertur-
bation theory, we invert equation (76) which gives

Z(U) = 1 − 1.307[1]
(
U

W

)2

+ 0.969[2]
(
U

W

)4

+ O(U6).

(113)
For the RDA, the extrapolated values from Figure 17 are
plotted. In the region where fourth-order perturbation is
reliable, U ≤ 0.6W , the results agree with those from
NRG and RDA within their numerical accuracy. There-
fore, fourth-order perturbation theory cannot discriminate
in favor of either of the two approaches which, however,
support different scenarios for the Mott-Hubbard metal-
insulator transition.

The quasi-particle weight from Iterated Perturbation
Theory closely follows the fourth-order result to a point
where (113) definitely overestimates Z(U), e.g., for U =
0.7W . From this we conclude that IPT generally overesti-
mates the stability of the metal.

6 Conclusions

In this work we have calculated the one-particle self-en-
ergy for the half-filled Hubbard model in the limit of infi-
nite dimensions to fourth order in the interaction strength.
We have reduced the four non-equivalent fourth-order dia-
grams to sets of two-dimensional integrals over real, tabu-
lated functions over finite intervals. From the self-energy,
we have derived the density of states, the ground-state

energy, the mean double occupancy, the momentum dis-
tribution, and the quasi-particle weight, and have com-
pared it to various analytical and numerical approaches
to the Hubbard model in infinite dimensions for the case
of a Bethe lattice with infinite coordination number, i.e.,
a semi-circular bare density of states.

Our results show that, at half filling, it is not permitted
to select only subclasses of diagrams because all diagrams
contribute equally. The imaginary part of the self-energy
to fourth order becomes positive at some frequency for
U = 0.64W , which limits the applicability of our fourth-
order results to moderate interaction strengths. For the
momentum distribution and, in particular, the ground-
state energy and the mean double occupancy, the pertur-
bation expansion appears to be better behaved, i.e., the
results remain sensible up to U ≈ W . A similar obser-
vation had been made for the single-impurity Anderson
model by Yamada and Yosida.

The Dynamical Mean-Field Theory (DMFT), which
becomes exact in infinite dimensions, requires the self-
consistent solution of a single-impurity Anderson model.
Our results indicate that the Dynamical Density-Matrix
Renormalization Group (DDMRG) is an excellent ‘impu-
rity solver’. Where Exact Diagonalization is hampered by
finite-size effects (ns ≤ 15), the DDMRG treats much big-
ger systems, up to ns = 64, and a new scheme for the
deconvolution of the data further improves the frequency
resolution. In this way, we obtain a very good agreement
between the results from DDMRG and fourth-order per-
turbation theory where the latter is applicable.

The agreement is found to be less satisfactory with the
results from Numerical Renormalization Group (NRG) at
intermediate frequencies. The Hubbard bands which be-
come discernible around U = 0.4W are not resolved very
well within the NRG scheme. It would be interesting to
see whether a deconvolution of the NRG data could im-
prove the agreement with fourth-order perturbation the-
ory at the energy scale of the Hubbard bands. Iterated
Perturbation Theory (IPT) works surprisingly well for
U ≤ 0.6 for all quantities tested. However, for larger in-
teraction strengths, it seriously overestimates the quasi-
particle weight and thus the stability of the metallic state.

The Random Dispersion Approximation (RDA), which
also becomes exact in infinite dimensions, provides the mo-
mentum distribution and the quasi-particle weight. The
results agree with those from fourth-order perturbation
theory within the limits of its applicability. Unfortunately,
for U ≤ W , the momentum distribution and the quasi-
particle weight turn out not be very sensitive quanti-
ties, i.e., all methods equally well reproduce the results
from fourth-order perturbation theory. However, the RDA
and NRG support two different scenarios for the Mott-
Hubbard metal-insulator transition. The differences be-
tween NRG and RDA in the quasi-particle-weight become
sizable only for U > 0.8W , a region which, unfortunately,
cannot be accessed with fourth-order perturbation theory.

We hope that the DDMRG approach will enable us to
investigate the region U > 0.6W in more detail. Work in
this direction is in progress.
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Appendix A: Momentum distribution near
the discontinuity

Using the Luttinger relations (14) and (15) for a Fermi
liquid, we evaluate (29) for nσ(ε > 0) = (1 − Z(U))/2 +
δn(ε). Then,

δnσ(ε) =
∫ 0

−ωc

dω

π

γω2

(ω/Z − ε)2 + γ2ω4
+ . . . , (114)

apart from regular terms which come from the incoherent
background in (25). Naturally, we are interested in the
behavior close to the Fermi energy, i.e., for energies which
fulfill

0 < Z(U)ε < ωc. (115)

Therefore, we require that

Z(U) ∝ ωc (116)

in order to observe a finite ε-interval in which the formulae
below are applicable. Furthermore, we choose ε > 0 so that
we are above the jump in the distribution.

As can be seen by an explicit calculation, the dominant
contribution for small ε comes from the frequencies ω =
Z(U)ε. Then, we may ignore the term proportional to ω4

in the denominator and we find

δnσ(Z(U)ε� ωc) =
γZ(U)2ωc

π

∫ 0

−1

dxx2

(x− Z(U)ε/ωc)2
.

(117)
This approximation requires that

ε� 1
Z(U)2γ

. (118)

This condition should correspond to (115) so that

1
Z(U)γ

∝ ωc, i.e., (119)

γ ∝ (ωc)−2. (120)

The scaling laws (116) and (120) appear to be natural,
given the Fermi liquid equations (14) and (15). To leading
order in ε ln ε, equation (117) results in (31).

If the above scaling laws (116) and (120) apply, there
should be a finite region around ε = 0 in which the ε ln ε
dependence can be seen. However, its overall intensity
scales down with an extra factor Z(U).

Appendix B: Definition of help functions

Here we define the help functions which are necessary for
the evaluations of the diagrams to fourth order. Explicit
results are given for the semicircular density of states (6)
in units of W = 4t ≡ 1.

We start with two functions which characterize the
non-interacting Green function.

f(ω) = P
∫ W/2

0

dε
ρ(ε)
ω + ε

, (121)

π

4
f

(
|ω| ≤ 1

2

)
= πω − 1 −

√
1 − 4ω2 ln

∣∣∣∣ 2ω
1 +

√
1 − 4ω2

∣∣∣∣ ,
(122)

π

4
f

(
|ω| > 1

2

)
= πω−1−sgn(ω)

√
4ω2−1 arccos

(
1

2ω

)
,

(123)

and

l(ω) = f(ω) − f(−ω) = �G0
σ(ω) (124)

= 8ω

(
1 − θ (|ω| − 1/2)

√
1 − 1

(4ω2)

)
. (125)

Next, we express the imaginary part of the bare polariza-
tion bubble in the form (0 ≤ a ≤W )

h(a) =
∫ W/2

0

dε1
∫ W/2

0

dε2 δ(a− ε1 − ε2)ρ(ε1)ρ(ε2)

(126)

=θ(
W

2
− a)

∫ a

0

dyρ
(
a+ y

2

)
ρ

(
a− y

2

)
+ θ(a− W

2
)
∫ W−a

0

dyρ
(
a+ y

2

)
ρ

(
a− y

2

)
,

(127)

and

Π0
σ(ω) = −

∫ W

0

da h(a)
(

1
ω − a+ iη

− 1
ω + a− iη

)
.

(128)
Moreover, we need the Hilbert transform of h(a)

H(x) = P
∫ W

0

da
h(a)
x+ a

, (129)

so that Π0
σ(ω ≥ 0) = πh(ω) and �Π0

σ(ω) = H(ω) +
H(−ω).

The imaginary part of the second-order self-energy re-
quires the function

s(b) =
∫ W/2

0

dε1
∫ W/2

0

dε2
∫ W/2

0

dε3

× ρ(ε1)ρ(ε2)ρ(ε3)δ(b− ε1 − ε2 − ε3), (130)
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which leads to

Σ(2)
σ (ω) = U2

∫ 3W/2

0

db s(b)
(

1
ω + b− iη

+
1

ω − b+ iη

)
;

(131)
compare (41). Moreover, we need the Hilbert transform of
s(b)

S(x) = P
∫ 3W/2

0

db
s(b)
x+ b

, (132)

so that Σ(2)
σ (ω ≥ 0) = −πU2s(ω) and �Σ(2)

σ (ω) =
U2[S(ω) − S(−ω)].

Finally, we introduce the derivative of the bare density
of states as

d(x) =
dρ(x)
dx

= −16
π

x√
1 − 4x2

for |x| < 1/2. (133)
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